Product Description
Recycling PET bottles Plastic twin screw Extruder machine price
Product model for your choosing:
(Notes: Different raw materials, the output is different, please tell me what’s the material you want to produce, I will recommend you the correct model.)
Type | TSH-20 | TSH-35 | TSH40 | TSH52 | TSH65 | TSH75 | TSH95 |
Screw Diameter (mm) product-list-1.html | 22 | 35.6 | 41 | 51.4 | 62.4 | 71 | 93 |
Screw Speed (rpm) | 600 | 600 | 600 | 600 | 600 | 600 | 600 |
Motor Power (kW) product-list-1.html | 4 | 18.5 | 30 | 55 | 90 | 132 | 315 |
L/D | 32-60 | 32-68 | 32-68 | 32-68 | 32-68 | 32-68 | 32-68 |
Output (Kg/h) | 2-15 | 15-95 | 70-120 | 155-255 | 255-400 | 450-750 | 950-1600 |
Product details:
1. Twin screw main extruder: Main motor: Imported “WEG”or “SIEMENS” Variable frequency motor(The frequency converter will automatically change the frequency to reduce the frequency of the motor. The operating current will always run between 80%, 50%, and 30% of the rated power. This will greatly reduce the motor’s operating current and achieve the effect of saving electricity).
2. Gearbox: Warranty: 3 years; (2)Concentricity deviation of output shaft and input shaft: within 0.2mm; (3)Both output shaft radial bearings are imported “IKO”and “NSK” bearings;
3. Electric cabinet box: (1)Inverter: Imported Switzerland”ABB”, Japan”TOSHIBA”,”FUJI”; (2)PLC: Imported “SIEMENS” brand; (3)Main electrical controller:”Schneider” brand; (4)Display of electric current:Japan “OMRON” brand; (5)Temperature instruments: Japan “OMRON” brand;
4. Twin-screw Barrel
Bimetal wear-resistant and corrosion-resistant material, the base material is 45# steel, after multiple forging, quenching and tempering treatment; the cylinder is inlaid with α-101 wear-resistant and corrosion-resistant alloy bushing, which has better wear resistance and corrosion resistance than general alloy bushings.
5. Screw elements
(1)Material is W6Mo5Cr4V2 (high speed tool steel) with the best wear resistance, the whole adopts vacuum quenching treatment, hardness is 60 ~ 62HRC; (2)Designed by the building block principle, and the screw element and the screw shaft are connected by an involute spline, and the screw combination can be adjusted according to the process requirements; The screw elements are all made by CNC machining center, with good identity and strong process repeat-ability,which is benefit for changing;
6. Screen changer+Die-head: Quick open die-head, convenient and fast, short flow path of the machine head and less material storage can significantly reduce the
deterioration of the material’s physical properties, yellowing, black spots
Machine applications:
(Notes: Our machine can be applied in the production of different plastics, such as color masterbatch, filler masterbatch, engineering plastics, reinforced materials, recycling plastics, biodegradable materials and so on.)
Our certificates:
Tengda has obtained High-tech Enterprise and National High-tech Enterprise award.
We have passed ISO,TUV,CE Certifications, more than 30 patents.
Our customers:
Related products:
product-list-1.html
After-sales Service: | 7*24 Hours Online Service |
---|---|
Warranty: | Gearbox: 3 Years; Extruder: 1 Year |
Raw Material: | PP PE Ect. High Filler Masterbatch |
Screw: | Double-Screw |
Inverter: | Inverter |
Electromagnetic Heater: | Without Electromagnetic Heater |
Samples: |
US$ 50/Set
1 Set(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
Screw Shaft Types
A screw shaft is a cylindrical part that turns. Depending on its size, it is able to drive many different types of devices. The following information outlines the different types of screws, including their sizes, material, function, and applications. To help you select the right screw shaft, consider the following factors:
Size
A screw can come in a variety of shapes and sizes, ranging from a quarter to a quarter-inch in diameter. A screw is a cylindrical shaft with an inclined plane wrapped around it, and its main function is to fasten objects together by translating torque into a linear force. This article will discuss the dimensions of screws and how to determine the size of a screw. It is important to note that screw sizes can be large and small depending on the purpose.
The diameter of a screw is the diameter of its shaft, and it must match the inner diameter of its nuts and washers. Screws of a certain diameter are also called machine screws, and they can be larger or smaller. Screw diameters are measured on the shaft underneath the screw head. The American Society of Mechanical Engineers (ASME) standardized screw diameters in 3/50-inch to 16 (3/8-inch) inches, and more recently, sizes were added in U.S. fractions of an inch. While shaft and head diameters are standardized, screw length may vary from job to job.
In the case of the 2.3-mm screw group, the construct strength was not improved by the 1.2-mm group. The smaller screw size did not increase the strength of the construct. Further, ABS material did not improve the construct strength. Thus, the size of screw shaft is an important consideration in model design. And remember that the more complex your model is, the larger it will be. A screw of a given size will have a similar failure rate as a screw of a different diameter.
Although different screw sizes are widely used, the differences in screw size were not statistically significant. Although there are some limitations, screws of different sizes are generally sufficient for fixation of a metacarpal shaft fracture. However, further clinical studies are needed to compare screw sizes for fracture union rates. So, if you are unsure of what size of screw shaft you need for your case, make sure to check the metric chart and ensure you use the right one.
Material
The material of a screw shaft plays an important role in the overall performance of a screw. Axial and central forces act to apply torque to the screw, while external forces, such as friction, exert a bending moment. The torsional moments are reflected in the torque, and this causes the screw to rotate at a higher rate than necessary. To ensure the longevity of the screw, the material of the screw shaft should be able to handle the bending moment, while the diameter of the shaft should be small enough to avoid causing damage.
Screws are made from different metals, such as steel, brass, titanium, and bronze. Manufacturers often apply a top coating of chromium, brass, or zinc to improve corrosion resistance. Screws made of aluminum are not durable and are prone to rusting due to exposure to weather conditions. The majority of screw shafts are self-locking. They are suited for many applications, including threaded fasteners, C-clamps, and vises.
Screws that are fabricated with conical sections typically feature reduced open cross-sectional areas at the discharge point. This is a key design parameter of conical screw shafts. In fact, reductions of up to 72% are common across a variety of applications. If the screw is designed to have a hard-iron hanger bearing, it must be hardened. If the screw shaft is not hardened, it will require an additional lubricant.
Another consideration is the threads. Screw shafts are typically made of high-precision threads and ridges. These are manufactured on lathes and CNC machines. Different shapes require different materials. Materials for the screw shaft vary. There are many different sizes and shapes available, and each one has its own application. In addition to helical and conical screw shafts, different materials are also available. When choosing material, the best one depends on the application.
The life of the screw depends on its size, load, and design. In general, the material of the screw shaft, nut body, and balls and rollers determine its fatigue life. This affects the overall life of the screw. To determine whether a specific screw has a longer or shorter life, the manufacturer must consider these factors, as well as the application requirements. The material should be clean and free of imperfections. It should be smooth and free of cracks or flaking, which may result in premature failure.
Function
The function of a screw shaft is to facilitate the rotation of a screw. Screws have several thread forms, including single-start, double-start and multi-start. Each form has its own advantages and disadvantages. In this article we’ll explore each of them in detail. The function of a screw shaft can vary based on its design, but the following are common types. Here are some examples of screw shaft types and their purposes.
The screw’s torque enables it to lift objects. It can be used in conjunction with a bolt and nut to lift a load. Screws are also used to secure objects together. You can use them in screw presses, vises, and screw jacks. But their primary function is to hold objects together. Listed below are some of their main functions. When used to lift heavy loads, they can provide the required force to secure an object.
Screws can be classified into two types: square and round. Square threads are more efficient than round ones because they apply 0deg of angle to the nut. Square threads are also stronger than round threads and are often used in high-load applications. They’re generally cheaper to manufacture and are more difficult to break. And unlike square threads, which have a 0deg thread angle, these threads can’t be broken easily with a screwdriver.
A screw’s head is made of a series of spiral-like structures that extend from a cylindrical part to a tip. This portion of the screw is called the shank and is made of the smallest area. The shank is the portion that applies more force to the object. As the shaft extends from the head, it becomes thinner and narrow, forming a pointed tip. The head is the most important part of the screw, so it needs to be strong to perform its function.
The diameter of the screw shaft is measured in millimeters. The M8 screw has a thread pitch of 1.25 mm. Generally, the size of the screw shaft is indicated by the major and minor diameter. These dimensions are appended with a multiplication sign (M8x1).
Applications
The design of screws, including their size and shape, determines their critical rotating speeds. These speeds depend on the threaded part of the screw, the helix angle, and the geometry of the contact surfaces. When applied to a screw, these limits are referred to as “permissible speed limits.” These maximum speeds are meant for short periods of time and optimized running conditions. Continuous operation at these speeds can reduce the calculated life of a nut mechanism.
The main materials used to manufacture screws and screw shafts include steel, stainless steel, titanium, bronze, and brass. Screws may be coated for corrosion resistance, or they may be made of aluminium. Some materials can be threaded, including Teflon and nylon. Screw threads can even be molded into glass or porcelain. For the most part, steel and stainless steel are the most common materials for screw shafts. Depending on the purpose, a screw will be made of a material that is suitable for the application.
In addition to being used in fasteners, screw shafts are used in micrometers, drillers, conveyor belts, and helicopter blades. There are numerous applications of screw shafts, from weighing scales to measuring lengths. If you’re in the market for a screw, make sure to check out these applications. You’ll be happy you did! They can help you get the job done faster. So, don’t delay your next project.
If you’re interested in learning about screw sizing, then it’s important to know the axial and moment loads that your screws will experience. By following the laws of mechanics and knowing the load you can calculate the nominal life of your screw. You can also consider the effect of misalignment, uneven loading, and shocks on your screw. These will all affect the life of your screw. Then, you can select the right screw.
editor by CX 2023-11-22
China manufacturer 5mm to 8mm Shaft Aluminum Casing with Screw Stepper Motor for CNC Machine 3D Printer Part with Good quality
Product Description
5mm to 8mm Shaft Aluminum Casing with Screw Stepper Motor for CNC Machine 3D Printer Part
Company description:
We are a professional manufacturer and have over 10 years production and management experience in the field of fasteners ;
We have not only passed ISO9001 Quality certification system, but also adopted process quality managing system, we not only provide you with high quality products, but also are your industrial fastener solution supplier;
We can provide our customers with a good solution in the area of production design, production process, packaging and after-sale service.Customer satisfaction is our sole pursuit;
Product Description:
Material | carbon steel, stainless steel, Aluminum,brass and so on |
Tolerance | -8004
Screw Shaft Types and UsesVarious uses for the screw shaft are numerous. Its major diameter is the most significant characteristic, while other aspects include material and function are important. Let us explore these topics in more detail. There are many different types of screw shafts, which include bronze, brass, titanium, and stainless steel. Read on to learn about the most common types. Listed below are some of the most common uses for a screw shaft. These include: C-clamps, screw jacks, vises, and more. Major diameter of a screw shaftA screw’s major diameter is measured in fractions of an inch. This measurement is commonly found on the screw label. A screw with a major diameter less than 1/4″ is labeled #0 to #14; those with a larger diameter are labeled fractions of an inch in a corresponding decimal scale. The length of a screw, also known as the shaft, is another measure used for the screw. Material of a screw shaftA screw shaft is a piece of machine equipment used to move raw materials. The screw shaft typically comprises a raw material w. For a particular screw to function correctly, the raw material must be sized properly. In general, screw shafts should have an axial-direction length L equal to the moving amount k per 1/2 rotation of the screw. The screw shaft must also have a proper contact angle ph1 in order to prevent raw material from penetrating the screw shaft. Function of a screw shaftWhen choosing a screw for a linear motion system, there are many factors that should be considered, such as the position of the actuator and the screw and nut selection. Other considerations include the overall length of travel, the fastest move profile, the duty cycle, and the repeatability of the system. As a result, screw technology plays a critical role in the overall performance of a system. Here are the key factors to consider when choosing a screw. |